homemade cycling powermeter

general chat

Moderators: Tacx support, mcorn, Tacx Moderator, Tacx Video Production, malfukt, Steve Newton, Nasz

Post Reply
ailee
Posts: 2
Joined: Tue Aug 30, 2016 5:13 am

homemade cycling powermeter

Post by ailee » Wed Aug 31, 2016 11:25 am

Image
Hello!

In my latest project I tried to realise a simple and cheap cycling powermeter based on Arduino. After a month I can say "Yes I can".

There are many commercial products (SRM, SRAM ...), but I'm always looking for a homemade solution. On the following pages I'll show you my successful construction.

Step 1: The principle
Image
Image
To calculate the power, we have to determine the current force, which is spent by the foot on the pedal. For this purpose I clued four strain gauges on the sides of my old crank. To get a Signal depending on the load I arranged them in a so called Wheatstone-Bridge.

During one full rotation I sum as many forces as possible and calculate the average. Combined with the average velocity (2 * Pi * crank-radius / rotation-time) I get the power P.

To know the proportionality between the force F and the output-voltage U I strained the crank with different masses and myself (a lot of mass ;-)). The rise of the line is in my case 292 Newton/Volt.

For the amplifier I took a LF353 with a gain of 330. With this Setup I get Output-voltages between 1 and 4 V. I decided to start at 1V to avoid a negative drift and late response. Therefore I have to determine the offset at the beginning of the measurement and subtract this offset from the following voltages.
Step 2: The setup
Image
For the power-supply I use two lipo-battery packs (7.4V, 1200 mAh for the receiver and a smaller 600 mAh one for the transmitter).

To save space I use an arduino nano and the NRF24L01 are responsible for the communication. They work great and you can send as many values as you want. In my case I send the power (P) and the rounds per minute (rpm).

I also had to check, when a full rotation has accured. To avoid a sensor, which has to be mounted on the bike-frame, I decided to use the gyroscope MPU-6050 which I got from http://www.kynix.com/Parts/2489756/MPU-6050.html. The accuracy is about +-3 degree per full rotation, which is satisfying.
Step 3: The completed crank and receiver
Image
The challenge was to fix up all the components (power-supply, gyroscope, NRF24L01, amplifier, arduino) on one crankarm but I succeded. I fixed them with double-sided tape and cable ties.

To mount the receiver on the bar I use the clamp from a bicycle-lamb.

Step 4: The results
Image
Image
After calibration and programming I first tried my powermeter indoor on my training roller. I got reasonable values and therefore I went outside. Heureka, it works :-)

Finally I can say, that it's possible to build a simple and working powermeter for

* 2 x arduino nano ..... 10 USD

* 2 x NRF24L01 ......... 5 USD

* 16x2 LCD ................ 5 USD

* 4 x strain gauges ..... 10 USD

* 2 x Lipo battery pack ..... 15 USD

* MPU-6050 ..................... 3 USD

* electronic parts .............. 7 USD

less than 55 USD.

Here is the video:https://www.youtube.com/watch?v=v1aaupmxOsI

Thank's for visiting my thread.

mickyduck

Re: homemade cycling powermeter

Post by mickyduck » Wed Aug 31, 2016 2:54 pm

Interesting project but would need some "Weather proofing" for use here :D
Can you export the data to an external app e.g. Golden Cheetah?

Post Reply

Return to “General”

Who is online

Users browsing this forum: No registered users and 8 guests